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Abstract. With the rapid development of of fuzzy Integral equations, the problem of finding its solution becomes

increasingly important for knowledge propagation and putting researchers wisdom to work. A recent development

trend of fuzzy integral equations is modeling many problems in the field of science and technology. If the unknown

function in the considered equation has a solution in terms of infinite series expansion, this proposed method

becomes more accurate to find the exact solution. According on the parametric form of a fuzzy number, a fuzzy

integral equation converts to two systems of integral equations in the crisp case, and then proposed method is

achieved to obtain the exact fuzzy solutions of fuzzy Volterra integral equations. To validate the effectiveness of

proposed method, some examples of considered equations are solved and the results show that it achieved the

best performance.
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1 Introduction

Recent years have witnessed a growing developing the subjects that’s related to fuzzy control
system, it was reflected on the increasing and fast of an interest to study of fuzzy integral
equations. Integral equations are important mathematical models for many problem in different
fields, such as physics, chemistry, biology, engineering and etc., as especially, fuzzy integral
equations.

In fact, evolution trend of the fuzzy integral equations encouraged researchers to investigate
for finding accurate and efficient solving methods for it.Therefore in the literature, numerous
studies have been proposed, e.g., apply of the successive approximations method Bica & Popescu
(2014) and Bica & Popescu (2013), the adomian decomposition method is applied in Rouhparvar
et al. (2009), Abbasbandy & Allahviranloo (2006) and Babolian et al. (2005), homotopy
perturbation method is used by Narayanamoorthy & Sathiyapriya (2016), hybrid method of
Laplace transform coupled with adomian decomposition method is proposed in Ullah et al.
(2020), application of fuzzy differential transform method Salahshour & Allahviranloo (2013),
the approximate solution is found by homotopy analysis method (Molabahrami et al., 2011), the
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fuzzy bernstein polynomials is prrsented in (Ezzati & Ziari, 2012), Laplace transform coupled
with adomian decomposition method is proposed in Ullah et al. (2021), spectral method is
discussed in Hooshangian, (2020).

In this paper, we introduce a composite method from a new integral transform has been
propused by Jafari (2021) and adomian decomposition method (JADM) to get the analytical
solution for the considered equation. Finally, to test the performance effectiveness of our method,
some examples have been given and solved.

The remainder of this paper is organized as follows. Section 2 includes some elementary
necessary preliminaries of the fuzzy calculus. Section 3 and Section 4 present the fuzzy Volterra
integral equation and the fuzzy integral transform method respectively. Practical implementa-
tion of composite method is introduced in Section 5. In Section 6, we give three illustrative
examples to implement the proposed method. Finally, Section 7 is concludes the work.

2 Preliminaries

In this section some basic definitions are presented that used through the paper.

Definition 1. (Goetschel & Voxman, 1986) A fuzzy number is a set y : R −→ I = [0, 1]
satisfying the following:
i. y is upper semi-continuous.
ii. Fuzzy convex.
iii. Normal and closure (supp y) is compact, where supp y = {t ∈ R : y(t) > 0} represent the
support of y.
Let RF be the set of all fuzzy numbers on R. The r level set of y, is denoted by

[y]r =

{
{t ∈ R : y(t) ≥ r} if 0 < r ≤ 1,

cl(supp y) if r = 0

where y(r) = [y(r), y(r)] is a closed bounded interval and y(r) is the left hand endpoint and y(r)
is the right hand endpoint of [y]r receptively.

Definition 2. (Friedman et al., 1996) A fuzzy number y is a pair [y(r), y(r)], 0 ≤ r ≤ 1 func-
tions, which satisfying the following properties:
i. y(r) is a bounded monotonic non-decreasing left continuous function,
ii. y(r) is a bounded monotonic non-increasing left continuous function,
iii. y(r) ≤ sy(r) , 0 ≤ r ≤ s
For arbitrary different fuzzy numbers y(r) = [y(r), y(r)], z(r) = [z(r), z(r)] and k > 0, we define
various operations as follow,

Addition: (y + z)(r) = y(r) + z(r), (y + z)(r) = y(r) + z(r)

Subtraction: (y − z)(r) = y(r)− z(r), (y − z)(r) = y(r)− z(r)

Scaler multiplication:

(ky)(r) = ky(r), (ky)(r) = ky(r) if k ≥ 0

(ky)(r) = ky(r), (ky)(r) = ky(r) if k < 0

Definition 3. (Puri et al., 1993).The Hausdorff distance for arbitrary fuzzy numbers (y, z)
given by D : E × E −→ R+ ∪ {0}, and defined as:

D(y, z) = sup
r∈[0,1]

max{|y(r)− z(r)|, |y(r)− z(r)|}
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D is a metric in E and has the following properties:
i. D(y + w, z + w) = D(y, z) for all y, z, w ∈ E;
ii. D(k.y, k.z) = |k|D(y, z) for all k ∈ R and y, z ∈ E;
iii. D(y + w, z + v) ≤ D(y, z) +D(w, v) for all y, z, w, v ∈ E;
iv. (D,E) is a complete metric space.

Definition 4. (Friedman et al., 1999) A fuzzy function f : [a, b] −→ R is denote to be continuous
if for any fixed t0 ∈ R and ε > 0 there exists δ > 0 such that if |t−t0| < δ then D(f(t)−f(t0)) < ε.

Definition 5. (Allahviranloo & Barkhordari, 2010) Let y, z ∈ E, if there exists w ∈ E such
that y = z + w, then w is said the H-difference of y and z, and denoted as y 	 z.

Definition 6. (Park et al., 1999) Consider yr(t) = [y(t)]r is the set valued mapping and con-
tinuous at t = a with respect to the Hausdorff metric D for all r ∈ [0, 1] then the level wise
continuous mapping y : [f1, f2] ⊂ R→ E is defined at a ∈ [f1, f2].

3 Fuzzy Volterra Integral Equation (FVIE)

Consider the following volterra integral equations with separable kernels

y(t) = f(t) + λ

∫ t

a
k(t, s)y(s)ds, a ≤ s, t ≤ b (1)

where λ1 ∈ R, f and k are known continuous functions defined on [a, b] and [a, b]×R, respectively,
and y(t) is the unknown function. In this section, we note that we investigate analytical solution
of fuzzy volterra integral equations with separable kernels. By the fuzzy concept, the given Eq.(1)
becomes with the fuzzy form as follow

y(t, r) = f(t, r) + λ

∫ t

a
k(t, s)y(s, r)ds (2)

Now, with respect to definition 2 we introduce the parametric form of FVIE. Let (f(t, r), f(t, r))
and (y(t, r), y(t, r)), 0 ≤ r ≤ 1 and a ≤ t ≤ b, be parametric forms of f(t) and y(t) ), respectively;
then the parametric form of FVIE is as follow{

y(t, r) = f(t, r) + λ
∫ t
a k(t, s)y(s, r)ds

y(t, r) = f(t, r) + λ
∫ t
a k(t, s)y(s, r)ds

(3)

we can see that Eq.(3) is a system of linear volterra integral equations in the crisp case for each
0 ≤ r ≤ 1 and t ∈ [a, b]. Sufficient conditions for the existence of a unique solution to Eq. (2)
are provided by the following theorem.

Theorem 1. (Park et al., 1999) Let
i. y(t) is a level wise continuous function on [a, a+ t0], t0 > 0.
ii. k(t, s) is a level wise continuous function on 4 : a ≤ s ≤ t ≤ a+ t0] and D(z(t), y(t0)) < t1,
where t1 > 0 .
iii. For any (t, s, y(t)), (t, s, z(t)) ∈ 4, we have

D([k(t, s, y(t))]r, [k(t, s, z(t))]r) ≤MD([y(t)]r, [z(t)]r),

where M > 0 is the constant and given for any r ∈ [0, 1]. Then the level wise continuous
solution y(t) exist and unique for Eq.(2) and defined for t ∈ (a, a + α) where α = {t0, t1N } and
N = D(h(t, s, y(t)), h(t, s, z(t))) ∈ 4.
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4 Fuzzy Integral Transform Method

In this section, we exhibit an integral transform which has been introduce in (Jafari, 2021) and
can be expressed as

J{f(t)} = F (ρ) = p(ρ)

∫ ∞
0

f(t)e−q(ρ)tdt (4)

where f(t) be a integrable function defined for t ≥ 0, p(ρ) 6= 0 and q(ρ) are positive real
functions, and for some q(ρ) provides the integral exists.
Now we suppose that f is a fuzzy valued function and ρ is a real parameter. So, we can
consider Eq.(4) as definition of fuzzy integral transform of f . the notation J(f) denote the
fuzzy integral transform of fuzzy valued function f(t), and the integral is the fuzzy Riemann
improper integral.Then the lower and upper fuzzy integral transform, based on the lower and
upper of fuzzy valued function f as following

F (ρ, r) = J{f(t, r)} = [J{f(t, r)} J{f(t, r)}]

where {
J{f(t, r)} = p(ρ)

∫∞
0 f(t, r)e−q(ρ)tdt, 0 ≤ ρ ≤ 1

J{f(t, r)} = p(ρ)
∫∞
0 f(t, r)e−q(ρ)tdt, 0 ≤ ρ ≤ 1

Additionally, the properties of the integral transform were shown in (Jafari, 2021).

Theorem 2. (Fuzzy Convolution Theorem) Let f1 and f2 are fuzzy valued function of exponen-
tial order p, which are piecewise continuous on [0, α], then

J{(f1 ∗ f2)(t)} = J{f1(t)} • J{f2(t)} =
1

p(ρ)
F1(ρ) • F2(ρ) (5)

Proof. Let start with the product

J{f1(t)} • J{f2(t)} = 1
p(ρ)F1(ρ) • F2(ρ)

= 1
p(ρ){p(ρ)

∫∞
0 e−q(ρ)τf1(τ)dτ}{p(ρ)

∫∞
0 e−q(ρ)uf2(u)du}

= p(ρ)
∫∞
0 (
∫∞
0 e−q(ρ)(τ+u)f1(τ)f2(u)du)dτ

substituting t = τ + u, and noting that τ is fixed in the interior integral, so that du = dt, we
have

J{f1(t)} • J{f2(t)} = p(ρ)

∫ ∞
0

(

∫ ∞
τ

e−q(ρ)tf1(τ)f2(t− τ)dt)dτ (6)

If we suppose f2(t) = 0̃ for t < 0, then f2(t− τ) = 0̃ for t < τ then Eq.(6) becomes

J{f1(t)} • J{f2(t)} = p(ρ)

∫ ∞
0

∫ ∞
0

e−q(ρ)tf1(τ)f2(t− τ)dtdτ

considering the hypotheses on f1, f2, the fuzzy integral transform of f1, f2 is an absolutely
converge and thus ∫ ∞

0

∫ ∞
0
|e−q(ρ)tf1(τ)f2(t− τ)|dtdτ

converges. In this case, the order of integration can be reversed, so that

J{f1(t)} • J{f2(t)} = p(ρ)
∫∞
0

∫∞
0 e−q(ρ)tf1(τ)f2(t− τ)dτdt

= p(ρ)
∫∞
0 (
∫ t
0 e
−q(ρ)tf1(τ)f2(t− τ)dτ)dt

= p(ρ)
∫∞
0 e−q(ρ)t(

∫ t
0 f1(τ)f2(t− τ)dτ)dt

= J{(f1 ∗ f2)(t)}
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5 Practical Implementation of Composite Method

In previous sections, we have presented the type of equation and method of solution as a frame-
work for our work. In this section, we will focus on the implementation issue of the proposed
framework which is solving the fuzzy Volterra linear integral equations with convolution type
kernel by using JADM. We assume the kernel function k(t, s) is a separable kernel and has the
formk(t − s) i.e. k(t, s) =

∑n
i=0 hi(t)gi(s) and satisfies the conditions of theorem 1 so that the

solution of Eq.(2) exists and unique. Suppose that for any a ≤ t, s ≤ b in k(t, s). considered
k(t, s) = t− s and λ = 1, Eq.(3) becomes{

y(t, r) = f(t, r) +
∫ t
a(t− s)y(s, r)ds

y(t, r) = f(t, r) +
∫ t
a(t− s)y(s, r)ds

(7)

Now we apply fuzzy integral transform to both side of Eq.(7) and using Theorem 4.1 we get{
J{y(t, r)} = J{f(t, r)}+ J{

∫ t
a(t− s)y(s, r)ds},

J{y(t, r)} = J{f(t, r)}+ J{
∫ t
a(t− s)y(s, r)ds},

{
J{y(t, r)} = J{f(t, r)}+ J{t}J{y(s, r)ds},
J{y(t, r)} = J{f(t, r)}+ J{t}J{y(s, r)ds},

{
J{y(t, r)} = J{f(t, r)}+ p(ρ)

q(ρ)2
J{y(s, r)ds}

J{y(t, r)} = J{f(t, r)}+ p(ρ)
q(ρ)2

J{y(s, r)ds}
(8)

We then take the inverse fuzzy integral transform J−1 to both sides of Eq.(8), to find{
y(t, r) = f(t, r) + J−1{ p(ρ)

q(ρ)2
J{y(s, r)ds}}

y(t, r) = f(t, r) + J−1{ p(ρ)
q(ρ)2

J{y(s, r)ds}}
(9)

Using the Adomian decomposition method, the unknown function y(t, r) of Eq.(2) decompos
into a sum of an infinite number of components defined by the decomposition{

y(t, r) =
∑∞

i=0 yi(t, r)

y(t, r) =
∑∞

i=0 yi(t, r)
(10)

Substituting Eq.(10) into Eq.(9) gives the{ ∑∞
i=0 yi(t, r) = f(t, r) + J−1{ p(ρ)

q(ρ)2
J{
∑∞

i=0 yi(t, r)}}∑∞
i=0 yi(t, r) = f(t, r) + J−1{ p(ρ)

q(ρ)2
J{
∑∞

i=0 yi(t, r)}}
(11)

By the ADM, we can be set the zeroth component by all terms outside the integral sign and the
nth components, n ≥ 1 are given by the recurrence relation, hence we have{

y0(t, r) = f(t, r)

y0(t, r) = f(t, r)

{
y1(t, r) = f(t, r) + J−1{ p(ρ)

q(ρ)2
J{
∑∞

i=0 y0(t, r)}}
y1(t, r) = f(t, r) + J−1{ p(ρ)

q(ρ)2
J{
∑∞

i=0 y0(t, r)}}
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{
y2(t, r) = f(t, r) + J−1{ p(ρ)

q(ρ)2
J{
∑∞

i=0 y1(t, r)}}
y2(t, r) = f(t, r) + J−1{ p(ρ)

q(ρ)2
J{
∑∞

i=0 y1(t, r)}}

and so on for other components.{
yn+1(t, r) = f(t, r) + J−1{ p(ρ)

q(ρ)2
J{
∑∞

i=0 yn(t, r)}}
yn+1(t, r) = f(t, r) + J−1{ p(ρ)

q(ρ)2
J{
∑∞

i=0 yn(t, r)}}
(12)

Clearly seen that the decomposition method made the fuzzy integral equation into an elegant
determination of computable components, then the obtained series converges very rapidly to the
exact solution of Eq.(2).

6 Illustrative Examples

In this section, we will evaluate the performance of the proposed method via obtain solutions of
fuzzy Volterra integral equations and show its utility. To this end, the following examples will
be are provided.

Example 1. Consider the following fuzzy linear Volterra integral equation (Ameri & Nezhad,
2017):

y(t, r) = f(t, r) +

∫ t

a
(t− s)y(s, r)ds (13)

where f(t, r) = (3 + r, 8 − 2r), 0 ≤ t ≤ 1 and the exact solution of given fuzzy integral solution
is y(t, r) = [3 + r, 8 − 2r]cosh(t). Applying JADM to solve this fuzzy integral equation.The
parametric form of Eq.(13) is as follow{

y(t, r) = (3 + r) +
∫ t
a(t− s)y(s, r)ds

y(t, r) = (8− 2r) +
∫ t
a(t− s)y(s, r)ds

(14)

Applying the fuzzy integral transform to both side of Eq.(14) and using Theorem 4.1 we have{
J{y(t, r)} = J{(3 + r)}+ J{

∫ t
a(t− s)y(s, r)ds}

J{y(t, r)} = J{(8− 2r)}+ J{
∫ t
a(t− s)y(s, r)ds}

{
J{y(t, r)} = J{(3 + r)}+ J{t}J{y(s, r)}
J{y(t, r)} = J{(8− 2r)}+ J{t}J{y(s, r)}

{
y(t, r) = (3 + r) + p(ρ)

q(ρ)2
J{y(s, r)}

y(t, r) = (8− 2r) + p(ρ)
q(ρ)2

J{y(s, r)}

we then apply the inverse fuzzy integral transform J−1 and simplify, to find{
y(t, r) = (3 + r) + J−1{ p(ρ)

q(ρ)2
J{y(s, r)ds}}

y(t, r) = (8− 2r) + J−1{ p(ρ)
q(ρ)2

J{y(s, r)ds}}
(15)

Substituting the decomposition series Eq.(10) into both sides of Eq.(15) gives{ ∑∞
i=0 yi(t, r) = (3 + r) + J−1{ p(ρ)

q(ρ)2
J{
∑∞

i=0 yi(t, r)}}∑∞
i=0 yi(t, r) = (8− 2r) + J−1{ p(ρ)

q(ρ)2
J{
∑∞

i=0 yi(t, r)}}
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or equivalently 
y0(t, r) + y1(t, r) + y2(t, r) + ... = (3 + r)+

J−1{ p(ρ)
q(ρ)2

J{y0(t, r)}}+ J−1{ p(ρ)
q(ρ)2

J{y1(t, r)}}+ ...

y0(t, r) + y1(t, r) + y2(t, r) + ... = (8− 2r)+

J−1{ p(ρ)
q(ρ)2

J{y0(t, r)}}+ J−1{ p(ρ)
q(ρ)2

J{y1(t, r)}}+ ...

(16)

This allows to set the following recurrence relation:{
y0(t, r) = (3 + r)

y0(t, r) = (8− 2r)

{
y1(t, r) = J−1{ p(ρ)

q(ρ)2
J{y0(t, r)}}

y1(t, r) = J−1{ p(ρ)
q(ρ)2

J{y0(t, r)}}{
y2(t, r) = J−1{ p(ρ)

q(ρ)2
J{y1(t, r)}}

y2(t, r) = J−1{ p(ρ)
q(ρ)2

J{y1(t, r)}}

The general terms are given by{
yn+1(t, r) = J−1{ p(ρ)

q(ρ)2
J{yn(t, r)}}

yn+1(t, r) = J−1{ p(ρ)
q(ρ)2

J{yn(t, r)}}

where n ≤ 0. Taking the lower limit solution of Eq.(14), and simplify

y0(t, r) = (3 + r)

y1(t, r) = J−1{ p(ρ)
q(ρ)2

J{y0(t, r)}} = (3 + r) t
2

2!

y2(t, r) = J−1{ p(ρ)
q(ρ)2

J{y0(t, r)}} = (3 + r) t
4

4!

y3(t, r) = J−1{ p(ρ)
q(ρ)2

J{y0(t, r)}} = (3 + r) t
6

6!

y4(t, r) = J−1{ p(ρ)
q(ρ)2

J{y0(t, r)}} = (3 + r) t
8

8!

(17)

and so on for other components may be in the same way computed. The upper limit solution of
Eq.(14) is being found as

y0(t, r) = (8− 2r)

y1(t, r) = J−1{ p(ρ)
q(ρ)2

J{y0(t, r)}} = (8− 2r) t
2

2!

y2(t, r) = J−1{ p(ρ)
q(ρ)2

J{y0(t, r)}} = (8− 2r) t
4

4!

y3(t, r) = J−1{ p(ρ)
q(ρ)2

J{y0(t, r)}} = (8− 2r) t
6

6!

y4(t, r) = J−1{ p(ρ)
q(ρ)2

J{y0(t, r)}} = (8− 2r) t
8

8!

(18)

In view of Eq.(17) and Eq.(18), the components were completely determined. Therefore, the
solution of Eq.(14) in a series form is readily obtained by using the series assumption in Eq.(10),
and it converges to the closed form solution{

y(t, r) = (3 + r)cosh(t)

y(t, r) = (8− 2r)cosh(t)

which is the exact solution and can be rewritten as y(t, r) = (3 + r, 8− 2r)cosh(t).
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Example 2. Consider the following fuzzy linear Volterra integral equation (Ameri & Nezhad,
2017):

y(t, r) = f(t, r) +

∫ t

a
(t− s)y(s, r)ds (19)

where f(t, r) = ([r, 2 − r](1 − t − t2

2 )), 0 ≤ t ≤ 1 and the exact solution of given fuzzy integral
solution is ([r, 2 − r](1 − sinh(t))). Applying JADM to solve this fuzzy integral equation. The
parametric form of Eq.(19) is as follow{

y(t, r) = r(1− t− t2

2 ) +
∫ t
a(t− s)y(s, r)ds

y(t, r) = (2− r)(1− t− t2

2 ) +
∫ t
a(t− s)y(s, r)ds

(20)

Applying the fuzzy integral transform to both side of Eq.(20){
J{y(t, r)} = J{r(1− t− t2

2 )}+ J{
∫ t
a(t− s)y(s, r)ds}

J{y(t, r)} = J{(2− r)(1− t− t2

2 )}+ J{
∫ t
a(t− s)y(s, r)ds}

Using Theorem 4.1, we have{
J{y(t, r)} = J{r(1− t− t2

2 )}+ J{t}J{y(s, r)}
J{y(t, r)} = J{(2− r)(1− t− t2

2 ))}+ J{t}J{y(s, r)}

{
y(t, r) = r(1− t− t2

2 ) + p(ρ)
q(ρ)2

J{y(s, r)}
y(t, r) = (2− r)(1− t− t2

2 ) + p(ρ)
q(ρ)2

J{y(s, r)}
(21)

We then apply the inverse fuzzy integral transform J−1 and substitute the decomposition series
Eq.(10) into both sides of Eq.(21) gives

∑∞
i=0 yi(t, r) = r(1− t− t2

2 )+

J−1{ p(ρ)
q(ρ)2

J{
∑∞

i=0 yi(t, r)}}∑∞
i=0 yi(t, r) = (2− r)(1− t− t2

2 )+

J−1{ p(ρ)
q(ρ)2

J{
∑∞

i=0 yi(t, r)}}

or equivalently 
y0(t, r) + y1(t, r) + y2(t, r) + ... = r(1− t− t2

2 )+

J−1{ p(ρ)
q(ρ)2

J{y0(t, r)}}+ J−1{ p(ρ)
q(ρ)2

J{y1(t, r)}}+ ...

y0(t, r) + y1(t, r) + y2(t, r) + ... = (2− r)(1− t− t2

2 )+

J−1{ p(ρ)
q(ρ)2

J{y0(t, r)}}+ J−1{ p(ρ)
q(ρ)2

J{y1(t, r)}}+ ...

(22)

This allows to set the following recurrence relation:{
y0(t, r) = r(1− t− t2

2 )

y0(t, r) = (2− r)(1− t− t2

2 ){
y1(t, r) = J−1{ p(ρ)

q(ρ)2
J{y0(t, r)}}

y1(t, r) = J−1{ p(ρ)
q(ρ)2

J{y0(t, r)}}{
y2(t, r) = J−1{ p(ρ)

q(ρ)2
J{y1(t, r)}}

y2(t, r) = J−1{ p(ρ)
q(ρ)2

J{y1(t, r)}}
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The general terms are given by{
yn+1(t, r) = J−1{ p(ρ)

q(ρ)2
J{yn(t, r)}}

yn+1(t, r) = J−1{ p(ρ)
q(ρ)2

J{yn(t, r)}}

where n ≤ 0. Taking the lower limit solution of Eq.(20), and simplify
y0(t, r) = r(1− t− t2

2! )

y1(t, r) = J−1{ p(ρ)
q(ρ)2

J{y0(t, r)}} = r( t
2

2! −
t3

3! −
t4

4! )

y2(t, r) = J−1{ p(ρ)
q(ρ)2

J{y0(t, r)}} = r( t
4

4! −
t5

5! −
t6

6! )

y3(t, r) = J−1{ p(ρ)
q(ρ)2

J{y0(t, r)}} = r( t
6

6! −
t7

7! −
t8

8! )

(23)

and so on for other components may be in the same way computed. The upper limit solution of
Eq.(20) is being found as

y0(t, r) = (2− r)
y1(t, r) = J−1{ p(ρ)

q(ρ)2
J{y0(t, r)}} = (2− r)( t22! −

t3

3! −
t4

4! )

y2(t, r) = J−1{ p(ρ)
q(ρ)2

J{y0(t, r)}} = (2− r)( t44! −
t5

5! −
t6

6! )

y3(t, r) = J−1{ p(ρ)
q(ρ)2

J{y0(t, r)}} = (2− r)( t66! −
t7

7! −
t8

8! )

(24)

In view of Eq.(23) and Eq.(24), the components were completely determined. Therefore, the
solution of Eq.(20) in a series form is readily obtained by using the series assumption in Eq.(10),
and it converges to the closed form solution{

y(t, r) = r(1− sinh(t))

y(t, r) = (2− r)(1− sinh(t))

which is the exact solution and can be rewritten as y(t, r) = (r, 2− r)(1− sinh(t)).

Example 3. Consider the following fuzzy linear Volterra integral equation (Salahshour & Al-
lahviranloo, 2013):

y(t, r) = f(t, r) +

∫ t

a
(t− s)y(s, r)ds (25)

where f(t, r) = [r − 1, 1 − r]t, 0 ≤ t ≤ 1 and the exact solution of given fuzzy integral solution
is y(t, r) = (r − 1, 1 − r)(sinh(t) + cosh(t) − 1). Applying JADM to solve this fuzzy integral
equation. The parametric form of Eq.(25) is as follow{

y(t, r) = (r − 1)t+
∫ t
a(t− s)y(s, r)ds

y(t, r) = (1− r)t+
∫ t
a(t− s)y(s, r)ds

(26)

Applying the fuzzy integral transform to both side of Eq.(26) and using Theorem 4.1 we have{
J{y(t, r)} = J{(r − 1)t}+ J{

∫ t
a(t− s)y(s, r)ds}

J{y(t, r)} = J{(1− r)t}+ J{
∫ t
a(t− s)y(s, r)ds}{

J{y(t, r)} = J{(r − 1)t}+ J{t}J{y(s, r)}
J{y(t, r)} = J{(1− r)t)}+ J{t}J{y(s, r)}{

y(t, r) = (r − 1)t+ p(ρ)
q(ρ)2

J{y(s, r)}
y(t, r) = (1− r)t+ p(ρ)

q(ρ)2
J{y(s, r)}
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we then apply the inverse fuzzy integral transform J−1 and simplify, to find{
y(t, r) = (r − 1)t+ J−1{ p(ρ)

q(ρ)2
J{y(s, r)ds}}

y(t, r) = (1− r)t+ J−1{ p(ρ)
q(ρ)2

J{y(s, r)ds}}
(27)

Substituting the decomposition series Eq.(10) into both sides of Eq.(27) gives{ ∑∞
i=0 yi(t, r) = (r − 1)t+ J−1{ p(ρ)

q(ρ)2
J{
∑∞

i=0 yi(t, r)}}∑∞
i=0 yi(t, r) = (1− r)t+ J−1{ p(ρ)

q(ρ)2
J{
∑∞

i=0 yi(t, r)}}

or equivalently 
y0(t, r) + y1(t, r) + y2(t, r) + ... = (r − 1)t+

J−1{ p(ρ)
q(ρ)2

J{y0(t, r)}}+ J−1{ p(ρ)
q(ρ)2

J{y1(t, r)}}+ ...

y0(t, r) + y1(t, r) + y2(t, r) + ... = (1− r)t+
J−1{ p(ρ)

q(ρ)2
J{y0(t, r)}}+ J−1{ p(ρ)

q(ρ)2
J{y1(t, r)}}+ ...

(28)

This allows to set the following recurrence relation:{
y0(t, r) = (r − 1)t

y0(t, r) = (1− r)t{
y1(t, r) = J−1{ p(ρ)

q(ρ)2
J{y0(t, r)}}

y1(t, r) = J−1{ p(ρ)
q(ρ)2

J{y0(t, r)}}{
y2(t, r) = J−1{ p(ρ)

q(ρ)2
J{y1(t, r)}}

y2(t, r) = J−1{ p(ρ)
q(ρ)2

J{y1(t, r)}}
The general terms are given by{

yn+1(t, r) = J−1{ p(ρ)
q(ρ)2

J{yn(t, r)}}
yn+1(t, r) = J−1{ p(ρ)

q(ρ)2
J{yn(t, r)}}

where n ≤ 0. Taking the lower limit solution of Eq.(26), and simplify

y0(t, r) = (r − 1)

y1(t, r) = J−1{ p(ρ)
q(ρ)2

J{y0(t, r)}} = (r − 1) t
2

2!

y2(t, r) = J−1{ p(ρ)
q(ρ)2

J{y0(t, r)}} = (r − 1) t
4

4!

y3(t, r) = J−1{ p(ρ)
q(ρ)2

J{y0(t, r)}} = (r − 1) t
6

6!

y4(t, r) = J−1{ p(ρ)
q(ρ)2

J{y0(t, r)}} = (r − 1) t
8

8!

(29)

and so on for other components may be in the same way computed. The upper limit solution of
Eq.(26) is being found as

y0(t, r) = (1− r)
y1(t, r) = J−1{ p(ρ)

q(ρ)2
J{y0(t, r)}} = (1− r) t22!

y2(t, r) = J−1{ p(ρ)
q(ρ)2

J{y0(t, r)}} = (1− r) t44!
y3(t, r) = J−1{ p(ρ)

q(ρ)2
J{y0(t, r)}} = (1− r) t66!

y4(t, r) = J−1{ p(ρ)
q(ρ)2

J{y0(t, r)}} = (1− r) t88!

(30)

In view of Eq.(29) and Eq.(30), the components were completely determined. Therefore, the
solution of Eq.(26) in a series form is readily obtained by using the series assumption in Eq.(10),
and it converges to the closed form solution{

y(t, r) = (r − 1(sinh(t))− cosh(t)− 1)

y(t, r) = (1− r)(sinh(t))− cosh(t)− 1)

which is the exact solution and can be rewritten as y(t, r) = (r−1, 1− r)(sinh(t))− cosh(t)−1).
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7 Conclusion

In this paper, we proposed a composite method to solve “fuzzy Volterra integral equations”
with separable type kernels analytically.This propose adopted ”JADM” and hereby developed
two sequences of together upper and lower limit solutions as general approach. Illustrative three
different examples were presented in order to test the proposed method. As we emphasized, the
solution may be found in a more easy way, remarkably, instead of using an intricate method.
Finally, we showed the effectiveness of JADM and the results clearly indicate that is a powerful
tool for solving fuzzy integral equations.
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